Package: gbmt 0.1.3

gbmt: Group-Based Multivariate Trajectory Modeling

Estimation and analysis of group-based multivariate trajectory models (Nagin, 2018 <doi:10.1177/0962280216673085>; Magrini, 2022 <doi:10.1007/s10182-022-00437-9>). The package implements an Expectation-Maximization (EM) algorithm allowing unbalanced panel and missing values, and provides several functionalities for prediction and graphical representation.

Authors:Alessandro Magrini

gbmt_0.1.3.tar.gz
gbmt_0.1.3.zip(r-4.5)gbmt_0.1.3.zip(r-4.4)gbmt_0.1.3.zip(r-4.3)
gbmt_0.1.3.tgz(r-4.4-any)gbmt_0.1.3.tgz(r-4.3-any)
gbmt_0.1.3.tar.gz(r-4.5-noble)gbmt_0.1.3.tar.gz(r-4.4-noble)
gbmt_0.1.3.tgz(r-4.4-emscripten)gbmt_0.1.3.tgz(r-4.3-emscripten)
gbmt.pdf |gbmt.html
gbmt/json (API)

# Install 'gbmt' in R:
install.packages('gbmt', repos = c('https://alessandromagrini.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • agrisus - EU agricultural sustainability data
  • agrisus2 - EU agricultural sustainability data

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.30 score 2 stars 10 scripts 408 downloads 1 mentions 2 exports 2 dependencies

Last updated 3 years agofrom:724f053e83. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 20 2024
R-4.5-winNOTENov 20 2024
R-4.5-linuxNOTENov 20 2024
R-4.4-winNOTENov 20 2024
R-4.4-macNOTENov 20 2024
R-4.3-winOKNov 20 2024
R-4.3-macOKNov 20 2024

Exports:gbmtposterior

Dependencies:latticeMatrix